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b \ Abstract {
- 4

> This paper describes a method of generating gamma varijates that
other methods,
appears to be less costly than’a recently suggested method in [3] For

a/f ha, 54 arC. ro 4" :; u’PLC
large shape parameter @ the cost of computat'ion is proportional to @
" yihoe /'N “lpre {
) whereas the method in [3] is proportional to «. Experimentatiog)in [2]
’ al he

Phe
> i sy indicates that for small & the method suggested here also dominates
otk meTh

methods recently suggested In | | | ,Yalbeit those methods dominate for large

&

‘a‘. The method suggested here uses the rejection technique.




g | 1. Introduction’

1 : This paper describes a new technique (method 1) for sampling from

the gamma distribution on a digital computer and compares it with an

3 ; alternative technique (method 2) that Wallace has suggested in [3]. A
ff ' gamma variate X has the probability density function't (p.d.f.)
H x“'] e */r(a) 0<x<a, a>0 ]
(1) fy(x) =
elsewhere.
'
Both methods use the rejection method and apply for o > 1. :
2. Rejection Method {
;lj‘ Let X be a nonnegative valued continuous random variable with .;
' 3; bounded p.d.f. representable in the form ;
, é
! . c(a, 8)a(a, B)g(x, a, B)N(X, a, B) O<x<w
SN (2) fx(x’ 0') =
‘ elsewhere
0 < h(x, a, B), S h(x, a, B)dx = 1,
0

0 < g(x’ Qy B) SEo a(as B) 2 ]/Q(X, Qs 8),

1/c(a, B) = a(a, B) Z g(x, @, B)h(x, a, B)dx.

Let X' denote a random variable with p.d.f. h and let U be a uniform

deviate on (0, 1). If U < a(a, B)g(X', a, B) then X' has the p.d.f.

T Iam grateful to Mr. Hunter McDaniel for programming methods 1
and 2 in PL/1.

tt

Here we assume a unit scale parameter without loss of generality.




fy in (2). This result follows from

prlU < a(a, 8)g(x, a, 8)[X' = xJh(x, o, B)
pr[U ia(as B)g(Xp Q, 8)]

fxl(X|U < a(“n B)Q(X. ay B)) -

(3)
= fx(x, a).
Since
(4) prlU < a(a, B)g(x, a, B8)] = 1/c(a, B)

c(a, B) denotes the mean number of trials to obtain an X from (2). For
a given X' from a specified h we want the probability of success to be

as close to unity as possible. This feature requires
(5) 1/a*(a, B) = max g(x, a, B).
X
For any X' we want (4) to be as large as possible, which implies.

c(as 8*) = min c(a, B) = min[1/a*(a, B)EG(X', a, B)]
B B

min[max g(x, «, B)/Eg(X', a, B)]
B X

Eg(X's as B) = S g(xs @s B)h(xs @ B)dX.

o

The distinction between methods 1 and 2 lies in the choice of h.

Table 1 shows relevant quantities for each proposal. To make an appropriate
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comparison between methods we need to consider the mean number of trials

cj(a, g*) for each and the mean number of required random numbers.

Table 1

Gamma Generation* for o > 1

Method
i hi(x, o, 8) g;(x, a5 8) a;*(a, 8) Bi* | cylas %)
1 B-'le-x/B xa-le(1/8-1 )x (e/a)a-'l - a“e]"’/r(a)
X" e X[ (1-8)y+8x] X" v(1-8)[s(1-y) ] =
2 [ e F(Y)Y1 Y /r(y)
r(y+1) (1-8)y+8x T-y' ly(l-s)v'
y=<a> Y =a-y

* <g> denotes the largest integer in 6.

3. Method i
Conceptually, method 1 implies 4 steps:

1. Generate an exponential deviate’ X'.
Generate a uniform deviate U.

1f U < (x'/e* *1)%") then X = oX' has the p.d.f. in (2).

H W N

Otherwise, return to step 1.

If we use the inverse transform method to generate X' then each trial requires

2 random numbers. Therefore, the mean number of random numbers needed to
generate X from (2) is 2a°/r(a)e“']. For large o this quantity is approximately
e(2a/n)]/2, an appealing result. Notice that for large integral a, using method 1

t An exponential deviate has unit mean.

|
q
|
1
|
i
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requires fewer random numbers than the conventional method which uses

b ‘

(7) X = -1nl_(U,), o
inl

U], s s Ua being a sequence of independent uniform deviates. For small integral i

a one can show that (7) is superior. Our experiments indicate that method one

prevails for nonintegral o < 7 and all o > 7.

4. Method 2

For integral o method 2 uses (7). For nonintegral « the 6 steps are:

1. Generate a uniform deviate U.

If U < 1-at+<a> generate X' from (7) using b = <a>.
Otherwise, generate X' from (7) using b = <at1>.
Generate a uniform deviate U.

If U < (X'/y)Y /(1-y'#X'/y) then X' has the p.d.f. (2).

(o T S L T N )]

Otherwise, go to step 1.

These steps require a+2 random numbers on average per trial. Therefore,

= ]
for nonintegral o, method 2 uses (a+2)P(Y)y] Y /r(a) random numbers on average.
This quantity is approximately a+2 for o>5.

5. Comparison of Methods

PL/1 programs were prepared using algorithm G1 for method 1 and

using the steps given in [3] for method 2.

Algorithm G1

Given: o
1. a' « a=1.
2. Generate a uniform deviate U.

(continued)




V<«-InU.

Generate a uniform deviate U.

W<« -In U.

If W>a'(V-1nV-1), X« aV and return with X.

N o o AW

Otherwise, go to 2.
Table 2 displays the results for generation of 10,000 gamma variates for each
selected value of " a.

Table 2

Comparison of Methods

e
a Method 1 Method 2 Ratio
1.25 723 1093 .661
2.25 988 1300 .760
3.25 1193 1542 774
4.25 1352 1787 .757
5.25 1541 2039 .756

Based on these results we computed expressions for Ti’ the mean

CPU time for method i, as a function of a. These expressions are in microseconds.

—
|

;=140 + 6240%/7(a)e®"!
(8)

-88+(752+254a)r(v)y' **Y/r(a).

Ta

The programs were run on the IBM 360/75 computer at the University of North
Carolina Computer Center at Chapel Hill as single stream inputs. This
procedure minimized the error due to monitoring in a multiprogram mode.
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For large a T{/T, ~ 624/254Ya = 2.46//a. For example, o« = 30 gives
T]/T2 ~ 0.45 and o = 50, T]/T2 ~ 0.35.

One modification to method 1 makes it at least as good as method 2 for
all integral a, while preserving its superiority for nonintegral o. Exper-
imentation with method 1 revealed that it is superior to method 2 for all

a > 7. Addition of the statement:

a
0. If o < 7 and <a> = a, return with X = -1n(1I Ui)
i=1

prior to statement 1 in algorithm G1 modifies the flow appropriately.

e

5. New Prospects

Upon conclusion of the work presented here the writer learned of research
by Dieter and Ahrens in [1] on gamma generation 1) using a truncated noncentral
Cauchy distribution for h and 2) exploiting the relationship between
the gamma and normal distributions for large a. The most notable feature
of their work is that computation time goes to a fixed limit as a increases.
Although this property makes the Dieter and Ahrens procedures more attractive
for large o, Robinson and Lewis [2] have recently prepared a gamma generation
program in which a variant of algorithm G1 dominates all competitors for
1.2 < a > 2.9. Since this is a commonly encountered range in practice the
significance of method 1 remains.

Since the work in [2] generates exponential variates by a more efficient
method than inverse transformation does, it is not presently clear to the
writer what the range of superiority would be using algorithm G1. This issue

is a legitimate concern since simulation languages such as SIMSCRIPT and

SIMPL/1 use the inverse approach.
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